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Abstract

Flow-induced vibrations of a fluid-conveying cantilever pipe are examined theoretically under the condition that the

fluid velocity has a small harmonic pulsatile component. More specifically, the case of principal parametric resonance is

considered for the pipe free to undergo three-dimensional motions. The mean flow is considered to be near the critical

flow rate at which the tube undergoes a Hopf bifurcation into self-excited oscillations. When the governing equations of

motion for the tube with steady flow are reduced to those on the center manifold in the neighborhood of Hopf

bifurcation, the normal form equations are O(2)-equivariant. The weak harmonic fluctuations due to pulsatile flow

result in symmetry-breaking terms in the normal form. The eigenvalues of an O(2)-equivariant system undergoing a

symmetry-breaking Hopf bifurcation have multiplicity two. When an additive linear term, arising from time-periodic

modulations of the original dynamic system, is introduced into the normal form, the symmetry-breaking bifurcation

structure for the trivial solution splits into three categories: a steady-state bifurcation giving rise to standing wave fixed-

point solutions, a Hopf bifurcation giving rise to two-frequency solutions, and an O(2)-Takens–Bogdanov bifurcation.

The resulting dynamics in each case are studied along with secondary and tertiary bifurcations. The dynamics of the

tube system are studied as a function of the mean flow rate and the frequency of flow fluctuations. Amplitude response

diagrams constructed for a specific example tube system using the continuation and bifurcation analysis software

package AUTO illustrate the variety of possible behaviors.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Piping systems conveying various fluids arise in a large class of engineering systems ranging from fuel pipelines in

Alaska and Siberia, to fuel-carrying tubes in space shuttle engines, to heat exchangers in nuclear power plants; thus, the

obvious interest in flow-induced oscillations of fluid-conveying pipes. These problems have been studied theoretically

and experimentally for nearly half a century. The problems studied have ranged from changes in natural frequencies of

the piping system due to flowing fluid, to vibrations due to turbulent flows, to instabilities when the mean flow exceeds

some critical value. Some of the most fascinating instability and dynamical phenomena in mechanical systems also arise
e front matter r 2005 Elsevier Ltd. All rights reserved.
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in pipes-conveying fluids. A very comprehensive introduction to vibrations induced by fluid flow and the associated

linear stability problems can be found in the text of Blevins (1990). The nonlinear behavior of slender structures

conveying fluids is discussed in detail in the recent monograph by Paı̈doussis (1998). See also Paı̈doussis (1987) and

Paı̈doussis and Li (1993).

The vast majority of studies related to the loss of stability of equilibrium (straight position of the pipe), and

subsequent post-instability dynamics have been limited to motions of the pipe restricted to a plane. Furthermore, when

the pipe has cantilever boundary conditions, the loss of stability with steady flow is known to occur through a Hopf

bifurcation (Guckenheimer and Holmes, 1986) so that in the post-critical flow regime, the pipe undergoes limit cycle

oscillations (Bajaj et al., 1980; Rousselet and Herrmann, 1981; Paı̈doussis, 1998). There have been a limited number of

studies where the effects of a pulsatile flow on the dynamic response of the pipe were also considered (Paı̈doussis and

Issid, 1976; Paı̈doussis and Sundararajan, 1975; Yoshizawa et al., 1986). In these cases, similar to an axially loaded

column, the loss of stability can be due to parametric or combination resonances (Nayfeh and Mook, 1979). When the

nonlinear planar response in the instability regions is considered for the pipe, the motions can be periodic or almost

periodic, depending upon the combination of mean flow, and the amplitude and frequency of parametric flow

pulsations (Bajaj, 1987b; Selmer and Paı̈doussis, 1996; Szebo, 2003). The last study was not limited to small parametric

excitations.

If the oscillations of the pipe are not restricted to a plane, the cantilever pipe is straight in the absence of the fluid, and

the pipe properties are symmetric with respect to the equilibrium position, it was shown by Bajaj (1982) and Bajaj and

Sethna (1984) that two distinct motions, namely a standing planar periodic oscillation and a rotating (nonplanar)

periodic motion, can bifurcate in the O(2)-symmetric system. By an O(2)-symmetric system we understand a system

with the symmetry properties of a circle. Thus, the system is invariant under arbitrary rotations about a certain Z-axis,

and under reflections about any plane including the Z-axis. The two motions (the standing planar oscillation and the

rotating motion) can be interpreted to be a consequence of symmetry breaking (Troger and Steindl, 1991).

Steindl and Troger (1992, 1995a, b, 1996) contributed the most to the study of nonlinear nonplanar oscillations of

fluid-conveying tubes. In these studies, the authors focused on tube configurations satisfying different types of

symmetry conditions with a view to uncover the role of symmetry in determining the possible bifurcating motions

(Golubitsky and Stewart, 2002; Golubitsky et al., 1988) when the downward hanging tube loses stability by different

eigenvalue conditions. As an example, by using axially located elastic supports, the loss of stability of the equilibrium

could result from a combination of buckling and flutter, depending on the system parameters. The resulting nonlinear

motions exhibit a very rich dynamics that can be discussed within the framework of equivariant bifurcation theory

(Golubitsky et al., 1988). Thus, they considered tube configurations satisfying O(2)- and D4-symmetries, basically

arising from the nature of intermediate spring supports for an otherwise cantilever tube with circular cross-section.

Other contributions to nonplanar oscillations of vertically hanging tubes (systems with O(2)-symmetry) are the works of

Copeland and Moon (1992) and Yoshizawa et al. (1998) where the effects of an end mass on the bifurcating standing

wave (SW) and rotary motions were considered.

In Steindl and Troger (1995a), the authors further discussed the effects of perturbations that destroy the idealized

symmetries, that is, systems with broken symmetries. Such broken symmetries often lead to splitting of solutions and

additional secondary bifurcations. Bajaj and Sethna (1991) also studied the problem of symmetry-breaking

perturbations, specifically for the cantilever tube with O(2)-symmetry. Since the spatial O(2)-symmetry consists of

the two operations, a rotation about an axis and reflections about planes that pass through that axis of symmetry, the

O(2)-symmetry can be destroyed by two different types of perturbations. In Bajaj and Sethna (1991), a tube with

different bending stiffnesses in two principal planes was considered, and thus the symmetry associated with rotations

about the Z-axis was destroyed. The mathematical framework for such problems was provided by Dangelmayr and

Knobloch (1987a, 1991).

In the present work, we consider nonplanar dynamics of the fluid-conveying cantilever tube when the flow has a

pulsatile component. Thus, the study is a generalization of the earlier works (Bajaj, 1987b; Selmer and Paı̈doussis, 1996)

for the case of principal parametric resonance, that is, the flow pulsations are harmonic with a frequency nearly twice

that of the flutter frequency for a steady flow. Such temporal modulations were shown by Riecke et al. (1988) to give

rise to an S1 symmetry-breaking in the O(2)-Hopf normal form. The two bifurcation parameters for a local analysis are

the mean flow rate beyond the critical value for a Hopf bifurcation, and the frequency of the harmonic flow fluctuation.

After discussing the local codimension-1 bifurcations, we consider some of the possible higher codimension

bifurcations. In particular, it is shown that the codimension-2 bifurcations are locally governed by the

Takens–Bogdanov normal form with O(2)-symmetry (Dangelmayr and Knobloch, 1987b). The results from the

literature are applied to the tube system, and response diagrams as a function of the mean flow rate are obtained using

the continuation and bifurcation analysis software package AUTO (Doedel, 1986). We should note that some of the

results in this work were earlier presented in a book chapter (Folley and Bajaj, 1999). Also, Yamashita et al. (2003) also
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have recently presented some analytical as well as experimental results for nonplanar dynamics of a tube with pulsatile

flow.

The work is organized as follows. The equations of motion for the fluid-conveying cantilever tube undergoing spatial

motions are presented in Section 2. Following an analysis for periodic oscillations near the critical mean flow rate, the

four first-order ordinary differential equations that govern the amplitudes and phases of the nonplanar tube motions are

derived using the method of averaging. The averaged equations are transformed into a normal form that takes advantage

of the results available in applied mathematics and physics literature. Issues related to symmetry are considered in

Section 4, followed by analytical results of bifurcation analysis in Section 5 for the tube system. The results of simulations

and response diagrams are discussed in Section 6. Finally, some concluding remarks are made in Section 7.

2. Equations of motion

The cantilever tube system under consideration is shown in Fig. 1. The equations of motion for transverse motions

can be obtained by performing a force and momentum balance for a combined tube and fluid element (Lundgren et al.,

1979), or by using a Lagrangian approach (Paı̈doussis, 1998). The usual underlying assumptions hold: the tube is long

compared to its diameter, its centerline is inextensible and initially straight, and the tube is made of a linearly elastic

material; the fluid is incompressible and is fully developed turbulent boundary layer (or slug) flow such that a time-

dependent component to the overall flow rate is allowed; and the gravity forces are small compared to the elastic

restoring forces and can be neglected. Let O be the origin at the centerline of the tube at the point of support, and let OZ

be along the undeformed centerline. The arc length ‘s’ along the deformed tube coincides with the Z coordinate in the

undeformed state. Let û; v̂ and ŵ be the displacements of the tube centerline in the X, Y and Z directions, respectively.

Let U be the velocity of the fluid with respect to the tube, and let m and M denote, respectively, the mass per unit length

of the tube and of the fluid. The equations of motion, in dimensionless form, and retaining the lowest-order nonlinear

terms, are given by
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Fig. 1. The three-dimensional cantilever tube conveying a fluid.
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The boundary conditions for a tube fixed at one end and free at the other are (Lundgren et al., 1979):

u ¼ v ¼
qu

qx
¼

qv

qx
¼ 0 at x ¼ 0, (2a)
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¼ 0 at x ¼ 1. (2b)

The dimensionless parameters r and b, and the variables u, v, x and t̂ in these equations have the definitions:
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Here, E is the modulus of elasticity, I is the moment of inertia of the tube cross-section, and L is the length of the tube.

Note that r represents the dimensionless flow velocity and is nonnegative, while b represents the ratio of the mass of the

fluid to that of the combined tube and fluid, and therefore lies between 0 and 1, where these two extremes, respectively,

represent a solid tube, and a tube with zero thickness. We should also point out that the term just before the equality

sign in Eqs. (1a) and (1b) is the additional term that arises due to the nonconstant flow velocity, and therefore the fluid

has an acceleration component along the centerline of the tube.

To study the problem of a pulsatile flow with principal parametric resonance, we assume that the flow velocity is of

the form

r ¼ r0 þ es cos 2ot̂,

where e is the order parameter, 0oe51, and r0 is the mean-flow component. The harmonic component of flow has

amplitude es, and its frequency is assumed to be nearly twice the critical Hopf frequency (see below).

To study nonlinear motions in a small neighborhood of the downward hanging position of the tube, that is near

ðu; vÞ ¼ ð0; 0Þ, let the displacements u and v be scaled by u! e1=2u; v! e1=2v:We also rewrite the equations of motion

in vector form by defining the following quantities:
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This transforms the system of Eqs. (1a) and (1b) into the vector form:
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where
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Here a prime denotes derivative with respect to x, and the operators L, L1, L2 are linear operators, while N is a

nonlinear operator. The boundary conditions as stated above in Eqs. (2a) and (2b) complete the statement of the

problem.

We are interested in bifurcation phenomena when the zero solution loses its stability as the mean flow, r0, approaches
a critical value. As is well known (Bajaj et al., 1980; Bajaj and Sethna, 1984), the straight downward position of the

cantilever tube becomes unstable by a Hopf bifurcation in each of the two orthogonal planes OXZ and OYZ. Thus, for

the case of purely steady flow ðs ¼ 0Þ, the bifurcation problem is O(2)-symmetric with two identical pairs of

complex–conjugate eigenvalues crossing the imaginary axis. In the formulation here, the fluctuations in flow, the

nonlinear elastic and inertia terms, and the linear destabilizing effects are all assumed to be of the same order and hence

of equal importance. We now proceed to construct the reduced or bifurcation equations following the steps identical to

those in Bajaj et al. (1980), and Bajaj and Sethna (1984, 1991). As we mentioned earlier, due to the circular cross-section

of the tube, Eq. (1) have an O(2) symmetry. These equations, in the absence of the pulsatile flow, are also invariant under

arbitrary time translation that is expressed by the rotation group S1. Thus, the complete tube equations without flow

pulsations possess the symmetry Oð2Þ � S1. The flow pulsations break the S1-symmetry component contained in Eq. (1).

3. Reduction to the center manifold and normal form

The linearization of the system of Eq. (3) is

qu
qt̂
¼ Luþ esfL1 cos 2ot̂þ L2 sin 2ot̂guþ Oðe2Þ. (4)

For s ¼ 0, this is simply the problem of a cantilever tube with steady flow r0. For this problem, it is well known

(Lundgren et al., 1979; Paı̈doussis, 1998) that for small flow rates, all the eigenvalues of the linear operator L are in the

left-half of the complex plane and the equilibrium position ðu; vÞ ¼ ð0; 0Þ ðor ðu1; u2; u3; u4Þ
T
¼ ð0; 0; 0; 0ÞÞ is

asymptotically stable. As the flow rate is increased, it reaches a critical value r0 ¼ rcr where a double

complex–conjugate pair of eigenvalues crosses the imaginary axis from left to right, rendering the equilibrium linearly

unstable. Denoting these eigenvalues by �io0; �io0, and the corresponding eigenvectors of L by wðjÞðj ¼ 1; 2Þ, the
steady-state periodic motions at the critical flow rate, for s ¼ 0, are of the form

uðt̂; xÞ ¼ c1w
ð1Þeio0 t̂ þ c̄1w̄

ð1Þe�io0 t̂ þ c2w
ð2Þeio0 t̂ þ c̄2w̄

ð2Þe�io0 t̂, (5)

where c1 and c2 are arbitrary complex constants. When sa0, the perturbed linear system contains periodic coefficients.

Depending on the mean flow r0, the amplitude of flow fluctuations es, and the fluctuation frequency 2o, the system can

exhibit parametric and combination resonances, the most pronounced of which are the parametric resonances that are

expected to occur for ðr0 � rcrÞ small when o is close to o0=n; n ¼ 1; 2; . . . . We choose specifically the case of n ¼ 1

corresponding to ‘primary’ parametric resonance. Thus, let r0 ¼ rcr þ ex and o ¼ o0 � eg, where x and g represent

variations in mean flow and excitation frequency, respectively, and define a new time scale ot̂ ¼ t̄. The equations of

motion (3) are then transformed to

o0
qu
q~t
¼ L0uþ

eg
o0

L0uþ ex
qL0

qr0
uþ esfL10 cos 2~tþ L20 sin 2~tguþ eNðu; rcrÞ þ Oðe2Þ, (6)

where we have used the first-order expansions

Lðr0Þ ¼ Lðrcr þ exÞ ¼ L0 þ ex
qL0

qr0
þ Oðe2Þ,

L1ðr0Þ ¼ L10 þ OðeÞ; L2ðr0Þ ¼ L20 þ OðeÞ,

Nðu; r0Þ ¼ Nðu;rcrÞ þ OðeÞ.
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Let us assume that, for 0ororcr, all the eigenvalues of the linear, unperturbed system ðs ¼ 0Þ are in the left half-

plane so that for motions of the complete equations at flow rates close to rcr, the center manifold theory (Guckenheimer

and Holmes, 1986; Troger and Steindl, 1991) can be applied. Thus, Eq. (6) can be projected onto the subspace spanned

by the eigenfunctions wðjÞ; w̄ðjÞ; j ¼ 1; 2, resulting in a set of four real (or two complex) ordinary differential equations

with small time-periodic coefficients in a linear term corresponding to the parametric excitation. Since the linear

unperturbed approximation to these nonlinear time-periodic ODEs is a set of two identical oscillators with frequencies

1, the method of averaging can be used to study their solutions. The application of the first-order averaging technique

results in a system of four nonlinear autonomous equations that capture the dynamics of the system for sufficiently

small e. Detailed steps for such calculations leading to the averaged equations can be found in Bajaj (1987b).

Thus, the solution is expanded in the form

u ¼ u0ða;/; ~tÞ þ eu1ða;/; ~tÞ þ e2u2ða;/; ~tÞ þ � � � ,

where u0ða;/; ~tÞ is the linear solution in Eq. (5) with ðc1; c2Þ ¼ ða1eif1 ; a2eif2 Þ, and the variables a and / are sought to

satisfy the system of equations
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After lengthy calculations (Bajaj and Sethna, 1984; Bajaj, 1987b), the explicit form of these equations is,
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In these equations, the coefficients F1r; F2r; b1r; d1r; F1i; F2i; b1i; d1i are the real and imaginary parts of the complex

constants F1; F2; b1; d1 defined by
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Furthermore, the parameter e has been absorbed in the time scale by t ¼ e~t. The above equations (8) determine the

dynamics of the nonlinear system on the center manifold for flow rates close to rcr and near the origin ða1; a2Þ ¼ ð0; 0Þ.
From the form of the linear system, it is already clear that L, and therefore its corresponding eigenfunctions, represent

identical spatial modes in the two planes XZ and YZ. Thus, the variables (a1,f1) and (a2, f2) in the solution u0ða;/; s̄Þ
represent the amplitude and the phase for motions in the two possible planes of motion of the tube.

To transform this system of equations into the broken O(2)-Hopf normal form, let

v1 ¼ a1 cosf1; v2 ¼ a1 sinf1,

w1 ¼ a2 cosf2; w2 ¼ a2 sinf2, ð9Þ

identify R4 � C2 by v̂ ¼ v1 þ iv2; ŵ ¼ w1 þ iw2, and then recombine via

z1 ¼ v̂þ iŵ; z2 ¼ ^̄vþ i ^̄w, (10)

where the bar denotes complex conjugation. Furthermore, let

Z ¼ xb1r; a ¼ xb1i þ g; D ¼ sd1=2. (11)

The Eqs. (8a)–(8d) are then transformed to

_z1 ¼ ½Zþ iaþ F1jz1j
2 þ ðF1 þ F2Þjz2j

2�z1 þ Dz2,

_z2 ¼ ½Z� iaþ F̄1jz2j
2 þ ðF̄1 þ F̄2Þjz1j

2�z2 þ D̄z1. ð12Þ

Because of the definitions in Eq. (11), there is a one-to-one correspondence between the Hopf bifurcation parameter Z
and the mean flow rate, and the normal form parameter D and the amplitude of harmonic fluctuation. The normal form

parameter a, however, is a combination of the mean flow rate and the detuning frequency making the physical

significance of this parameter somewhat indirect.

We will now study the various solutions of the normal form equations (12). These solutions are related to spatial

motions of the tube through the transformations (9) and (10). The equilibrium solutions of Eqs. (12) correspond to

periodic oscillations of the tube. The solutions with one of the complex amplitudes zero, that is, ðz1; z2Þ ¼ ðzc; 0Þ or
ðz1; z2Þ ¼ ð0; zcÞ for some complex constant zc, represent rotary periodic motions of the tube about the Z-axis. They can

be clockwise or anti-clockwise rotary motions depending on the phase relation between the motions in the two planes.

The solutions with ðz1; z2Þ ¼ ðzc; z̄cÞ represent SW motions where the solution is restricted to a plane. These are the two

fundamentally distinct classes of solutions. We now present some symmetry considerations for the solutions of Eq. (12).
4. Symmetry considerations

Eqs. (12) satisfy the following spatial symmetry operations:

SOð2Þ : ðz1; z2Þ7!eijðz1; z2Þ, (13a)

Z2 : ðz1; z2Þ7!ðz̄2; z̄1Þ. (13b)

These actions correspond to spatial translations y! yþ j and spatial reflections, or flip symmetries, y!�y,
respectively; see Knobloch (1986) and Dangelmayr and Knobloch (1987a, 1991). In the unperturbed case ðD ¼ 0Þ, there

is the additional temporal (S1) symmetry present in the normal form characterized by

S1 : ðz1; z2Þ7!ðe
�iotz1; e

iotz2Þ. (13c)

This temporal symmetry is strictly local in character, and is broken by including sufficiently high-order terms in the

normal form. In this parametric excitation case, we have perturbed this symmetry by a first-order term that cannot be

removed by further normal form transformations.

In the unperturbed case ðD ¼ 0Þ, it is well known (Bajaj and Sethna, 1991; Golubitsky et al., 1988; Knobloch, 1986)

that for the Oð2Þ � S1-symmetric system there are only SW and rotary (or travelling) wave (designated as TW)

solutions. These solutions arise as a result of symmetry-breaking bifurcations from the origin as a function of the flow

rate Z and satisfy the invariance of the two distinct isotropy subgroups. The TW motions are invariant under a twisted

subgroup ðSOð2Þ � S1Þ where a spatial translation by an angle is applied simultaneously with an appropriate temporal

phase shift, forming circular or rotary motions. The SW motions are formed by the superposition of the two

distinct TW motions, resulting in a planar oscillation. These SW motions, therefore, respect a flip symmetry (Z2)

across a fixed axis.
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As a function of the nonlinear coefficients, there are six distinct regions possible in the (F1r, F2r) parameter plane with

different bifurcation diagrams, as shown in Fig. 2. In only two of the regions, numbered III and IV, both the TW and

the SW solutions are supercritical, while only one of these solutions is stable. For the tube system, Bajaj and Sethna

(1984) showed that of the six possible cases, only these two cases arise and, as mentioned before, the case at hand

depends on the mass ratio b for the tube. Thus, we assume that the nonlinear coefficients of the normal form satisfy

2F1r þ F2ro0 and F1ro0. (14a)

Further, we assume the nondegeneracy conditions

F1ra0; F2ra0; 2F1r þ 2F2ra0. (14b)

In region IV and for a given value of flow rate, Z, the tube executes a stable SW motion, that is, the tube exhibits

supercritical bifurcation to periodic oscillations that remain in a plane passing through the Z-axis. Though a TW or

rotary solution also bifurcates supercritically, it is unstable. In region III, however, the TW solution is stable while the

SW motions are unstable. As will turn out, the dynamics of the system with parametric excitation ðDa0Þ will be much

richer for systems in region III compared to those in region IV.

In this work, as already mentioned, we break the local S1 symmetry by the inclusion of a parametric time-modulation

to the original system, thereby forming a nonautonomous vector field. When an averaging analysis is performed on this

nonautonomous system, it results in an additive linear term to the O(2)-Hopf normal form. For the perturbed normal

form, Eqs. (12), the isotropy subgroup lattice is shown in Fig. 3 (Golubitsky et al., 1988). For this purely O(2)-

equivariant system, the figure shows that the symmetry-breaking steady-state planar oscillations (SW) connect with the

trivial solution. The TW motions of the unperturbed case do not exist under S1 symmetry-breaking perturbations to the

normal form. The SW oscillations respect the Z2-symmetry, though the plane containing these motions can only be
Fig. 2. Bifurcation diagrams for the unperturbed O(2)-Hopf normal form. For the cantilever tube conveying fluid, only regions III and

IV are of interest where both the standing wave and the rotary wave solutions are supercritical. Tubes with mass ratio b2 lying in the

intervals (0.0–0.195), (0.3–0.588) and (0.7–0.873) are in region III, where the bifurcating standing wave solution is stable. Tubes with

mass ratio b2 lying in the intervals (0.195–0.3), (0.588–0.7) and (0.873–0.9) are in region IV, where the bifurcating travelling wave

solution is stable.
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determined by initial conditions. Two SW motions can arise sequentially with opposing stability, but, in this case, they

do not have a fixed phase difference to characterize them. The planar oscillations secondarily bifurcate into

nonsymmetric motions that are formed by a superposition of unequal response amplitudes and phases, and therefore

form motions denoted mixed TWs (TW2). Note that the isotropy subgroup lattice does not predict Hopf bifurcations

and these cases must be treated separately.

We now proceed with the analysis of the normal form, Eqs. (12) with the assumptions in Eqs. (14a).
5. Fixed point solutions and bifurcations

5.1. Trivial solution

The trivial solution is O(2)-invariant and exists for all values of parameters. The eigenvalues of the linearization of

Eqs. (12) have multiplicity 2 for each eigenvalue. Since the characteristic equation is

l2 � 2Zlþ Z2 þ a2 � d2 ¼ 0, (15)

where d2 ¼ jDj2, the following three possible instabilities arise:

P0 : Z2 þ a2 ¼ d2 ðPitchforkÞ, (16)

H0 : Z ¼ 0; a24d2 ðHopfÞ (17)

and two Takens–Bogdanov points given by

TB : Z ¼ 0; a ¼ �d. (18)

It will be shown that the H0 instability is a Hopf bifurcation giving rise to time-dependent motions for Eq. (12). The TB

points, therefore, arise when the underlying Hopf frequency of these time-dependent solutions is zero, thus creating two

codimension-2 TB points. The appropriate linearization for these codimension-2 points will be shown to be nilpotent,

thereby giving a Takens–Bogdanov normal form with O(2)-symmetry. If Eqs. (16)–(18) are considered in ðZ; aÞ-plane
with fixed amplitude of parametric excitation (d), Eq. (16) is a circle of radius d, and Eq. (17) defines two semi-infinite

lines along the a-axis starting at the TB points defined in Eq. (18). Eq. (16) will be referred to as the ‘‘pitchfork circle’’.

Note that the stability boundaries corresponding to the trivial solution are distinguished by the subscript ‘‘0’’. A similar

notation will be followed for the stability boundaries corresponding to nontrivial fixed-point solutions.

5.2. Pitchfork bifurcations along P0

The coordinates that simplify this analysis are ‘‘spherical polar coordinates’’ defined by the transformations (Swift,

1988)

z1 ¼ r1e
iy1 ; z2 ¼ r2e

iy2 , (19a)

r1 ¼ A cosðj=2Þ; r2 ¼ A sinðj=2Þ; y ¼ y1 � y2; ŷ ¼ y1 þ y2. (19b)
O(2)

Z 
2

1

↑

↑
Fig. 3. The isotropy subgroup lattice for O(2) acting on the space C2 as per the Eqs. (1a) and (1b). The Z2 subgroup gives rise to

standing wave (SW) motions, while the trivial subgroup gives rise to the mixed travelling wave (TW2) motions.
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Eqs. (12) then become

_A ¼ A Zþ d sinj cosðyþ bÞ þ A2 F1r þ
F2r

2
sin2j

� �� �
, (20a)

_j ¼ cosj½2d cosðyþ bÞ þ A2F2r sinj�, (20b)

�_y ¼ 2aþ 2d sinðyþ bÞ cscjþ b̂A2, (20c)

_̂y ¼ cosj½2d sinðy� bÞcscj� A2F2i�, (20d)

where

b̂ ¼ 2F1i þ F2i; D ¼ deib; j 2 ½0; p�.

Note that the system dynamics are now determined by considering the solutions only for (A,j,y), as the dynamics for

the sum of the phases ŷ, Eq. (20d), are decoupled from the vector field.

There are two classes of fixed-point solutions for Eqs. (20a)–(20c):
(A)
 Standing waves (SW): A0 ¼ const.; j ¼ j0 ¼ p=2; y0 ¼ const. This fixed-point solution corresponds to the

spanfFixðZ2Þg ¼ ðz; z̄Þ in the complex representation. These motions are the result of a combination of identical

right (clockwise) and left (counterclockwise) TWs. Note that for these fixed-points
_̂y ¼ 0, which can be interpreted

to mean that the phase of the solution is locked to parametric excitation (Riecke et al., 1994). The position of the

plane of oscillation can only be determined by initial conditions, or by weak (higher-order) asymmetries in the

physical system.
(B)
 Mixed travelling waves (TW2): A0 ¼ const.; j0 ¼ const. a0; p=2; p; y0 ¼ const. This solution corresponds to

spanfFixÞð1Þg ¼ ðz1; z2Þ. These are ‘‘mixed’’ TWs as neither of the solution amplitudes is zero, and also they have no

nontrivial isotropy. Note also that for these solutions
_̂ya0 since j0ap=2. Therefore, these are periodic solutions of

the complete system (20a)–(20d), or the O(2)-Hopf normal form (12), although they are fixed-points of the system

defined by Eqs. (20a)–(20c).
The SW solutions bifurcating from the pitchfork circle P0 satisfy:

A4
0

4
½â2 þ b̂

2
� þ A2

0½Zâþ ab̂� þ Z2 þ a2 � d2 ¼ 0, (21a)

tanðy0 � bÞ ¼ � aþ
A2

0

2
b̂

� ��
Zþ

A2
0

2
â

� �
, (21b)

j0 ¼ p=2, (21c)

where â ¼ 2F1r þ F2r. These are identical to equations for the case of planar dynamics of the tube when Hopf

bifurcation is perturbed with pulsatile flow (Bajaj, 1987b).

Eqs. (21) show that
(i)
 two real SW solutions exist when the parameters satisfy:

Zâþ ab̂o0; Z2 þ a24d2; ðZb̂� aâÞ2oðâ2 þ b̂
2
Þd2;
(ii)
 one real SW solution exists when the parameters satisfy: Z2 þ a2od2; and

(iii)
 no real solutions exist otherwise.
Clearly, these fixed-point solutions and those obtained by the rotation y0 ! y� p are not distinguished in Eq. (21).

Thus, outside the pitchfork circle P0, there are either two or no SW solutions while inside P0, there is at most one

solution. Furthermore, there are two SWs emanating from the pitchfork circle of differing amplitudes and opposing

stability characteristics (Bajaj, 1987b).
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These SW solutions bifurcating from the trivial solution can be shown to undergo the bifurcations described below.

(a) Saddle-node type bifurcation along

SNSW : ðZb̂� aâÞ2 ¼ ðâ2 þ b̂
2
Þd2 (22)

with Zâþ ab̂o0, where one eigenvalue is zero and the two SWs, given by the roots of Eq. (21a), annihilate one another.

(b) Secondary Hopf bifurcation along the boundary

HSW : ðZb̂� 2aâÞ2 þ ðZâÞ2 ¼ ð2dâÞ2, (23)

where a pure imaginary pair of eigenvalues arises for the SW motion, thus giving rise to two-frequency motions for the

original system. Since this criticality is in perturbations in ðA; yÞ subspace, the resulting periodic solutions of Eqs.

(20a)–(20c) are SW motions. These motions are designated as SW2 motions. Only a portion of this curve, from Z ¼ 0 to

the point where it meets the saddle-node curve, Eq. (22), satisfies the requirement that the product of eigenvalues be

positive for a Hopf bifurcation. The TB analysis below, near the points ðZ; aÞ ¼ ð0;�dÞ, will characterize the dynamics

locally about this secondary bifurcation set. Note that it is implicitly assumed here that ZX0.

(c) Pitchfork bifurcation along the curve

PSW : ðZb1 � 2aF1rÞ
2
þ ðZF2rÞ

2
¼ ð2F1rdÞ

2, (24)

where the phase at j0 ¼ p=2 becomes unstable and migrates to another steady-state value as a function of system

parameters, thereby forming TW2 motions. To fully describe the conditions that give rise to this stability boundary, we

now investigate the TW2 fixed-point solutions (see above for reasons to call them fixed-points).

The mixed TW (TW2) fixed-point solutions (in item B above) are defined by

A2
0 ¼ �Z=F1r, (25a)

sin2 j0 ¼
ð2dF1rÞ

2

F ssðZ; aÞ
, (25b)

tanðy0 � bÞ ¼ �
Zb̂� 2aF1r

ZF2r

, (25c)

where F ssðZ; aÞ ¼ ðZb̂� 2aF1rÞ
2
þ ðZF2rÞ

2. Eqs. (25a) and (25b) imply that two TW2 mode solutions exist since A2
0 is

single valued and the angle j0 has two solutions of opposite phase. Thus, there are two modulated TWs, one clockwise

and the other counterclockwise. As the parameter Z (the mean flow) is varied, the phase angle j0 varies smoothly, and

so the orientation of these TW motions change continuously with the system parameters. The assumption F1ro0,

Eq. (14a), implies that these solutions are supercritical. Furthermore, from the solution for j0, we get a second existence

condition

ðZb̂� 2aF1rÞ
2
þ ðZF2rÞ

2
Xð2F1rdÞ2, (26)

which implies that these solutions exist outside of the PSW stability boundary for fixed d. Note that along the curve PSW,

j0 attains the value p/2, and the amplitude of the SW solution achieves the value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Z=F1r

p
. Hence, the SW and TW2

solution branches join along PSW. The characteristic equation determining stability of the TW2 fixed-point solutions is

cubic. Thus, we could expect Hopf and higher codimension instabilities from these solutions. Since the TW2 modes

contain minimal symmetry, no steady-state bifurcations, other than those along the pitchfork set PSW, can arise.

The stability boundaries HSW and PSW intersect at the TB points for the trivial solution, as defined above in Eq. (18).

The boundaries HSW and SNSW intersect in a cusp point, as already discussed above. The pitchfork bifurcation curve

(PSW) intersects the saddle-node curve (SNSW) along the sheet:

Zðb̂
2
þ âF2rÞ ¼ 2F1rb̂a. (27)

The secondary Hopf (HSW) curve and the pitchfork (PSW) curve intersect at

Z½â2ðb̂
2
þ F2

2rÞ � F2
1rðâ

2
þ b̂

2
Þ� ¼ 4âb̂F1rF2ra. (28)

We now consider the second of our instability classes, the Hopf bifurcation along the boundary H0 defined by

Eq. (17).
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5.3. Hopf bifurcations along H0

To discuss the existence and stability of motions that arise from the trivial solution along the Hopf bifurcation set H0

(away from the TB points defined by Eq. (18)), we first consider solutions that are restricted to the invariant subspace

z1 ¼ z̄2 � z. The O(2)-Hopf normal form equations (12) then take the form

_z ¼ ðZþ iaÞzþ ð2F1 þ F2Þ zj j2zþ Dz̄. (29)

Solutions governed by these equations are the SW and SW2 solutions for the tube system and the same equations arise

in the study of the parametrically perturbed Hopf bifurcation (Bajaj, 1986, 1987a; Vance and Ross, 1989). Many of

these solutions have already been identified above. Vance and Ross (1989) gave a detailed global bifurcation picture for

this system and results in the context of planar oscillations of the fluid conveying cantilever tube were derived in Bajaj

(1987b). In any case, it is well known that there can be a Hopf bifurcation from the trivial solution that gives rise to a

doubly periodic (SW2) orbit for the tube system. A perturbation or averaging analysis for small Z can be used to

construct approximations to this solution. Rather than repeating these details of explicit computation of the solution,

we show its existence and provide bounds using the idea of trapping region (Guckenheimer and Holmes, 1986; Bajaj,

1987b).

It is convenient to do a phase shift so that D is, without loss of generality, real and positive. Now let z ¼ ûþ iv̂ and

û ¼ r̂ cos c; v̂ ¼ r̂ sin c. Then, it is easy to show that Eq. (29) reduces to

1

2

d

dt
r̂2 ¼ r̂2½Zþ cos 2cþ âr̂2�. (30)

Let r̂21 ¼ ðZ� 1Þ= âj j and r̂22 ¼ ðZþ 1Þ= âj j . Then, for ZX1, all circles with radii r̂o r̂1 and r̂4r̂2 are cycles without contact

because for r̂or̂1; dr̂=dtX0, and for r̂4r̂2; dr̂=dtp0. Thus, all trajectories in the invariant subspace of SW motions

move into the annulus r̂1pr̂pr̂2 and since there are no singular points in this region, there are limit cycles present.

The other possible solutions bifurcating from the trivial solution can be the TW solutions that are motions not

restricted to an invariant subspace. These solutions can be uncovered by assuming solutions of the form:

z1 ¼ r1e
iot; z2 ¼ r2e

iðotþxÞ. (31)

Substituting this form of the TW solutions into Eq. (12) and performing some algebra, it can be shown that

ðr21 þ r22Þ ¼ �Z=F1r; ðr
2
1 � r22Þ ¼ �oZ=ðaF1r � ZF1iÞ. (32)

These solutions bifurcate from the trivial solution along the bifurcation set H0.

Comparing the expressions in Eq. (32) with the solutions in Eq. (15), it is clear that they are the same solution,

designated as TW2 solutions. It is interesting to note that no approximation needs to be carried out to obtain these two-

frequency periodic solutions.

5.4. Bifurcations near codimension-2 Oð2Þ Takens–Bogdanov points

To perform a bifurcation analysis in the neighborhood of the TB bifurcation points, Eq. (18), the most expedient

approach is to bring the O(2)-Hopf normal form in Eq. (12) into the form analyzed by Dangelmayr and Knobloch

(1987b). Then, the results of this fundamental study can be directly utilized for the tube problem. Note that at either of

the TB points, the linearization around the trivial solution has a nilpotent Jordan form with multiplicity two. To

transform system (12) into an appropriate form, a two-step process is used. First, the system at exact criticality is

transformed and reduced to the desired normal form. Then the effects of perturbations in parameters from criticality

are added.

Let a ¼ �d� Di; b ¼ Dr, and make the change of variables

z1 ¼ ½ðaþ ibÞfð1� iÞ~z1 þ ð1þ iÞ ~̄z1g � ~z2ð1þ iÞ þ ~̄z2ð1� iÞ�=4,

z2 ¼ ½�ðaþ ibÞfð1� iÞ ~̄z1 þ ð1þ iÞ~z1g � ~z2ð1� iÞ þ ~̄z2ð1þ iÞ�=4. ð33Þ

Then, the system at the TB points becomes

_z1 ¼ z2 þ ða1 z1j j
2 þ b1 z2j j

2Þz1 þ c1z21z̄2 þ ða2 z1j j
2 þ b2 z2j j

2Þz2,

_z2 ¼ ða3 z1j j
2 þ b3 z2j j

2Þz1 þ c3z21z̄2 þ ða4 z1j j
2 þ b4 z2j j

2Þz2, (34)

where the ‘tilde’ over the new variables have been dropped for simplicity of notation, and the coefficients are given in

the Appendix. This pair of equations is exactly the O(2)-equivariant third-order normal form that is an O(2)



ARTICLE IN PRESS
C.N. Folley, A.K. Bajaj / Journal of Fluids and Structures 21 (2005) 459–484 471
generalization of the Takens–Bogdanov normal form, including the requirement that all nonlinear coefficients are real-

valued. The group actions corresponding to Eq. (34) are given by

SOð2Þ : ðz1; z2Þ7!eijðz1; z2Þ,

Z2 : ðz1; z2Þ7!ðz̄1; z̄2Þ.

We begin the analysis of Eqs. (34) by performing a near-identity and O(2)-equivariant coordinate transformation that

places the vector field into the form

_z1 ¼ z2,

_z2 ¼ ½A z1j j
2 þ B z2j j

2 þ Cðz1z̄2 þ z̄1z2Þ�z1 þD z1j j
2z2, (35)

where the constants A, B, C, D are also given in terms of the coefficients of the system parameters in the Appendix. Now

performing a two-parameter unfolding, Z ¼ Ẑ; a ¼ �dþ â, and invoking the coordinate transformation used in Holmes

(1981),

y ¼ Ez; E ¼
1 0

e21 1

 !
; e21 ¼

�ðẐa� âbÞ

a� âða2 þ b2Þ
,

the system in Eqs. (35) attains the final form

_y ¼
0 1

m n

 !
yþ

0

f ðyÞ

 !
þ

OðjmjjyjÞ

Oðjyj4Þ

 !
, (36)

where the unfolding parameters are given by

n ¼ 2Ẑ; m ¼ � Ẑ2 þ
â
a

a2 þ b2 1�
â
a

� �� �� �
. (37)

The function f contains the same third-order terms as in system (35) that are now written in terms of the new variable y.

Note that m is a quadratic function of parameters, consistent with the earlier discussion, since m ¼ 0 should locally

describe the pitchfork bifurcation set P0 from the trivial solution to the SW modes.

Dangelmayr and Knobloch (1987b) introduced a very clever approach to classify and study the steady state and

periodic solutions of system (36) by transforming it into a problem of central-force motion with first-order perturbation

by introducing a slow time t̂ ¼ et, where e is a small parameter, and by scaling y1 and the unfolding parameters

according to y1 ! ey1; m! e2m; n! e2n: With this scaling, the normal form becomes

y001 � e½ny01 þ Cðȳ1y01 þ y1ȳ01Þy1 þD y1
		 		2y01� � ðmþ A y1

		 		2Þy1 ¼ Oðe2Þ, (38)

where y1 is the first component of y and the prime denotes differentiation with respect to the new slow time t̂. Note that

the coefficient B does not enter the equation and, therefore, does not affect the system dynamics to OðeÞ. To form

central-force motion (Dangelmayr and Knobloch, 1987b), the real variables (r,f) are introduced via the definition,

y1 ¼ reif. Additionally, defining the ‘‘angular momentum’’, L � r2f0; and ‘‘potential’’

V ¼
L2

2r2
�

mr2

2
�

Ar4

4
,

the normal form (38) achieves the desired structure

r00 þ
qV

qr
¼ eðnþMr2Þr0 þ Oðe2Þ, (39a)

L0 ¼ eðnþDr2ÞLþ Oðe2Þ, (39b)

where the constant M is, again, defined in the Appendix. Using these equations and a detailed analysis, it was shown in

Dangelmayr and Knobloch (1987b) that the following types of motions are possible.
(i)
 Trivial state (T): r ¼ 0; L2 ¼ 0, trivial downhanging state of the tube (O(2)-symmetric solution).
(ii)
 Standing waves (SW): r40; L2 ¼ 0, exists for energies corresponding to extrema of the potential, ra0. They

represent the nonsteady-state planar oscillations about the trivial solution (Z2-symmetric).
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(iii)
 Two-frequency standing waves (SW2): L2 ¼ 0. These are oscillations in the radial direction (planar oscillations).

Under specific conditions (Dangelmayr and Knobloch, 1987b), they may be characterized by oscillations about the

trivial solution (zero mean), or by oscillations about a nontrivial solution (nonzero mean). In these two cases, the

motions will be denoted SW02 and SW0 02, respectively.
(iv)
 Two-frequency travelling waves (TW2): r40; L240, exist for energies that allow both radial and rotary oscillations.
(v)
 Nonzero mean, two-frequency modulated waves (MW): L2 ¼ 0, are planar oscillations about the SW fixed-point

solution, and therefore form 2-tori. These motions arise from the secondary Hopf bifurcation HSW.
The various possible bifurcation sets in the (m; n) plane and the corresponding amplitude diagrams are dependent on

the sign of the constants A, D and M, and the value of D/M. From the Appendix we see that, by our restrictions and

nondegeneracy conditions on the nonlinear coefficients of the original normal form given in equations (13), Do0 and

Mo0, while sgnðAÞ ¼ �sgnðab̂Þ. By the definition of the constant a, for fixed nonlinear coefficients, the sign of the

constant A changes between the top and bottom TB points on the pitchfork circle and, thus, the dynamics are expected

to be different in the vicinity of these two point. Furthermore, since D=M ¼ F1r=â and â ¼ ð2F1r þ F2rÞ, the dynamics

near these TB points are completely determined by the nonlinear coefficients of the original O(2)-Hopf normal form. At

specific values of the ratio D/M, additional degeneracies of the normal form can occur resulting in codimension-3

bifurcations. The different bifurcation sets (in the (m; n) plane) derived in Dangelmayr and Knobloch (1987b) are

identified by conditions on D/M, and many of them do not arise in the present study due to our restrictions on the

nonlinear coefficients F1r and F2r. If one restricts the discussion to region III of Fig. 2, it is immediately obvious that

jD=Mjo1
2
.

This eliminates most of the diagrams listed in Dangelmayr and Knobloch (1987b).

Another important parameter distinguishing the two classes of diagrams is the sgnðab̂Þ, and we discuss both the

possibilities in the following.

For the case of ab̂40, there are only two possible diagrams depending on whether |D/M| is 41
5
or o1

5
, and they are

shown in Fig. 4. Note that the bifurcation sets here are drawn in terms of the unfolding parameters m and n that, by

Eq. (37), are parabolas in terms of the system parameters Ẑ and â. The corresponding parabolas in the (Ẑ; â)-plane are
characterized by a constant K defining the straight lines m ¼ Kn, and may be ordered in the ðẐ; âÞ-plane, from left to

right, by the value of this constant. The bifurcation sets in the figure are defined by
P0:
 steady-state bifurcation from the trivial state forming SW modes;
H0:
 Hopf bifurcation from the trivial state;
PSW:
 bifurcation due to an angular momentum eigenvalue instability producing TW2 motions from the SW fixed-

point solutions;
LS:
 secondary bifurcation from the SW2 modes to MW modes by an angular momentum instability;
SLs:
 heteroclinic bifurcation from the SW2 oscillations to the MW oscillations;
SNS2:
 saddle-node bifurcation for the SW2 oscillations;
LH:
 secondary Hopf bifurcation from the TW2 modes to the MW motions;
HSW:
 secondary bifurcation from a phase-locked SW solution to an unlocked SW2 standing wave motion; and
SLM:
 homoclinic bifurcation of the MW motions.
For the case of ab̂o0, the diagram of Fig. 5 is the only one possible for region III of Fig. 2. On comparing Figs. 4 and

5, it is clear that the dynamics are different depending on the TB point of interest. This has already been seen in the

codimension-1 analysis above as well where an additional bifurcation set (HSW) exists in the vicinity of Z ¼ 0, a ¼ �d
compared to the point Z ¼ 0, a ¼ d.
Consider Fig. 4(a) where the smaller amplitude, unstable SW solution arises from the trivial solution along the

primary pitchfork bifurcation set, P0. Note that the unstable SW solution has arisen at the saddle-node bifurcation set,

SNSW, prior to crossing P0. We will see this specifically in the section on numerical results. Since the SNSW bifurcation

set does not arise from the TB points, the analysis in Dangelmayr and Knobloch (1987b) cannot capture this instability

structure. The unstable SW solutions connect with the TW2 motions along the secondary pitchfork bifurcation set, PSW,

and reconnect with the trivial solution along the pitchfork bifurcation, P0. The TW2 motions arising at PSW are unstable

and encounter a secondary Hopf bifurcation along LH that gives rise to the stable MW motions. These modulated

motions exist until the SLM bifurcation set occurs. To the left of the LH curve, the TW2 motions are stable until the end

of their existence domain defined by H0. The SW2 motions arising from the trivial solution along the primary Hopf

bifurcation set, H0, are unstable throughout their region of existence.
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Fig. 4. Bifurcation sets in (m,n) plane in the vicinity of the TB points for ab̂40. The parameters m and n are defined in terms of the

bifurcation parameters in Eq. (39). (a) 0ojD=Mjo1
5
; (b) 1

5
ojD=Mjo1

2
. The value jD=Mj ¼ 1

5
is a degeneracy value for the normal form.
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When the ratio |D/M| lies between 1
5
and 1

2
(Fig. 4(b)), the dynamics are similar to those for Fig. 4(a) except that the

SW2 motions become stable upon intersecting the LS bifurcation set where the MW motions arise as a bifurcation from

the SW2 motions. Therefore, we see explicitly that if jD=Mjo1
5
, this connection between the SW2 and MWmotions does

not arise, while if 1
5
ojD=Mjo1

2
, then it does. The value of jD=Mj ¼ 1

5
is a degeneracy condition for ab̂40.

For the case of ab̂o0 shown in Fig. 5, a stable SW motion arises at the primary pitchfork bifurcation. This is because

the SNSW bifurcation set has not been crossed prior to the P0 bifurcation set, and this will be explicitly seen below in the

stability diagrams for specific examples of the cantilever tube problem. These motions remain stable until the secondary

pitchfork bifurcation boundary PSW is crossed where the stable TW2 motions arise. These TW2 motions remain stable

throughout their region of existence. The unstable SW motion encounters the secondary Hopf bifurcation set HSW,

where it subcritically bifurcates to unstable SW0 02 motions. These motions continue subcritically until the heteroclinic

bifurcation set SLS where they become supercritical unstable SW02 motions. The unstable SW02 motion connects

smoothly with the SW2 motion from the primary Hopf bifurcation along the saddle-node bifurcation set SNS2 where

they annihilate one another.

In the numerical results below, we will consider specific cases and see in detail how these various motions arise and

connect to one another by the use of the continuation and bifurcation analysis package AUTO (Doedel, 1986). Before,

moving on to the numerical results, we close this section with a few comments about the other higher codimension

critical stability points.



ARTICLE IN PRESS

Fig. 5. Bifurcation sets in (m,n) plane in the vicinity of the TB points for ab̂o0. This is the only diagram that exists when the nonlinear

coefficients are restricted to region III of Fig. 2. Many more possibilities arise for systems with normal form in region IV.
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5.5. Bifurcations near other codimension-2 points

The degenerate points D and E defined as the intersection between the two stability boundaries P0 and SNSW for the

trivial solution and the SW solutions, respectively, do not give any additional bifurcations at least for motions restricted

to SWs. The resulting local bifurcation sets near points D and E in the (Z,a)-plane are identical to those derived in Bajaj

(1987b, Fig. 3). More global behavior in the invariant plane of SWs can be also found in Vance and Ross (1989). The

intersection of bifurcation sets H0 and SNSW at point F on the a-axis also does not give any additional bifurcations as H0

is for the trivial solution while SNSW is a saddle-node bifurcation set for SWs with nontrivial SW solutions. Finally, at

the intersections of bifurcation sets SNSW, HSW, and PSW, the dynamics of the system normal form (12) can be shown to

be equivalent to quadratic normal forms that admit Z2 symmetry. This type of normal form is well known, and an

analysis using the same scaling as in Dangelmayr and Knobloch (1987b), can be found in Knobloch and Proctor (1981).

A possible scenario for the dynamics of the Z2 system near the intersection of bifurcation sets SNSW and HSW (designated

as point P in later figures) was already derived for the problem of tube conveying a pulsatile flow (Bajaj, 1987b).
6. Illustrative results

Some results of the above analysis are now presented for the system under consideration, the cantilever tube

conveying a pulsatile flow. We focus on the effects of the mean flow rate Z and the excitation frequency a on the

dynamics of the system. Thus, the amplitude of flow pulsations (s, Eq. (11)) is set to unity. As was seen in Section 4, the

unperturbed system dynamics (for systems with O(2)-symmetry) is characterized by the nonlinear coefficients F1r and

F2r, and for the tube system, only the cases corresponding to regions III and IV in Fig. 2 arise. We focus only on region

III since the dynamics in this case are expected to be richer when the perturbations destroy S1 symmetry. One can argue

that in region III, the natural tendency of a perfectly O(2)-symmetric system is to bifurcate into stable TW motions that

respect the S1-symmetry. The introduction of perturbations that break S1-symmetry sets up a competition between the

external influence and the natural tendency. This influence should fade away when the amplitude of perturbations

relative to the natural motions (exemplified by Z) becomes small.
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To illustrate the variety of responses exhibited by the tube, we choose two tube configurations corresponding to the

two sign possibilities for the nonlinear coefficient F1i. The mass ratio for these tubes and the corresponding values of the

normal form coefficients are given in Table 1. For these values, consider the bifurcation sets shown in the (Z,a)-plane in
Figs. 6(a) and 6(b) for the mass ratios of b2 ¼ 0:65 and 0.20, respectively. Recall that P0 and H0, respectively, are the

primary pitchfork and Hopf bifurcation sets for the zero solution characterizing the downward vertical position of the

tube. The two sets meet at points A and B where the linearization about the trivial solution has double-zero eigenvalues

with zero Hopf frequency, thus resulting in the Takens–Bogdanov (TB) bifurcation. The curves SNSW, PSW and HSW

are the secondary bifurcation sets for SW fixed-point solutions. The set SNSW corresponds to the saddle-node

bifurcation where the two SW modes are either created or annihilated. The secondary pitchfork curve PSW and the

secondary Hopf curve HSW, where TW2 and SW2 motions arise, emanate from the TB points A and B. The Hopf

bifurcation set HSW meets the saddle-node bifurcation set SNSW at the cusp point C. The points D, E and F are critical

points that satisfy many stability criteria simultaneously (i.e., are of higher co-dimension), and the dynamics expected in

their neighborhoods were commented at the end of Section 5.

Figs. 6(a) and 6(b) are actually partial bifurcation sets in that the two branches of the PSW curve are part of an elliptic

curve and close at a value of Z larger than what is shown, and, furthermore, they intersect the SNSW lines twice. For

large values of mean flow rate, the effect of the parametric excitation on the dynamics is expected to diminish, and the

motions described in region III of Fig. 2 must be realized. Thus, for large values of mean flow rate the TW motions

should arise and be stable. Hence as Z increases, the TW2 solutions become a pure TW motion under the condition

Zbd. Furthermore, by numerical integration and the use of AUTO, we have not been able to detect any instability in

these TW2 solutions for large flow rates relative to the frequency a and excitation amplitude d, as shown in Fig. 5.

From the O(2) TB analysis in Dangelmayr and Knobloch (1987b) (and Section 5 above) it is known that, in the

vicinity of the points A and B that are located at Z ¼ 0; a ¼ �d, the signs of the coefficients A, D, and M along with the

value of the ratio D/M, determine the bifurcation diagrams that are appropriate for the tube system for the two chosen

mass ratios. The defining parameter values are given in Table 2 and the corresponding bifurcation sets are shown in

Figs. 4(b) and 5. We see that for either sign of F1i, the dynamics are the same, and the dynamics associated with these

TB points have already been discussed.

In order to appreciate the various solutions that the physical system can exhibit, we now choose to vary the mean

flow and use AUTO to generate the amplitude response diagrams. To draw these diagrams in terms of Z, we vary a for

fixed d, along the lines a ¼ mZþ a0 (a parameter variation line or PVL). We choose four such lines that capture the

essential dynamics of the system and discuss the resulting response diagrams in the case of the mass ratio of b2 ¼ 0:65.
No essential differences are found in the response diagrams for the mass ratio of 0.20. We should note here that AUTO

cannot reliably detect, nor continue from, points where the algebraic multiplicity of the critical eigenvalues is greater

than one and, hence, the vector field in Eq. (20) was used. Even with these equations, AUTO cannot generate the SW2

and TW2 motions that arise from the primary Hopf bifurcation set H0. These solutions in the spherical coordinate

representation of Eq. (19) are given by

A2 ¼ �Z=F1r for TW2; (40a)

A2 ¼ �Z=ð2F1r þ F2rÞ þ OðZ2Þ for SW2: (40b)
Table 1

The values of linear, nonlinear, and parametric excitation coefficients for the cantilever tube conveying a pulsatile flow for mass ratios

b2 of 0.20 and 0.65

Coefficients Mass ratio (b2)

0.20 0.65

F1r �0.75086 �0.76466

F1i 0.74018 �0.16085

F2r �0.03522 �0.15102

F2i �1.17926 �0.92457

d1r 1.83168 10.35927

d1i 2.79311 2.12377

b1r 2.254900 2.682572

b1i �0.617378 3.878705

o0 13.714699 26.415443
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Fig. 6. The stability boundaries or local bifurcation sets for the trivial and standing wave (SW) solutions. The sets P0 and H0 are for

the trivial solution. The sets PSW, HSW and SNSW are for the standing wave solutions. The points A and B are the codimension-2 points

that give rise to the O(2) Takens–Bogdanov bifurcations. The point C is the cusp point that is formed by the intersection of HSW and

SNSW. Points D, E and F satisfy many stability conditions simultaneously: (a) mass ratio b2 ¼ 0:65 and (b) mass ratio b2 ¼ 0:20.
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Table 2

Values of parameters for the O(2) Takens–Bogdanov normal forms at points A and B in the local bifurcation sets

Mass ratio (b2) Point (7d) Sign (ab̂) D/M

0.20 + � 0.488542

0.20 � + 0.488542

0.65 + + 0.455063

0.65 � � 0.455063

See Figs. 4 and 5 for the corresponding bifurcation diagrams.
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Consider Fig. 7 where the four PVL lines to be used to depict the dynamics of the system are plotted. The numbering

of the lines has been chosen to show increasingly complicated dynamics. These lines intersect the bifurcation sets

analytically derived above, while AUTO found the additional secondary Hopf bifurcation (LH) arising from the TW2

solutions. Thus, the following numbering scheme is used to depict the type of instability occurring at the values of flow

rate shown on the amplitude response diagrams: 1. the start point of simulation; 2,3. intersections with the pitchfork

circle P0; 4. intersection with the primary Hopf line H0; 5,6. intersections with the saddle-node lines SNSW; 7.

intersection with the secondary Hopf curve HSW; 8,9. intersections with the pitchfork ellipse PSW; 10. secondary Hopf

bifurcation from the TW2 solutions as an intersection with the LH bifurcation set; and, 11. the endpoint of simulations

in AUTO, or the right most point of the PVL.
6.1. Case 1: m ¼ b1i=b1r, a0 ¼ 3

Fig. 8 shows the amplitude response diagram for the variation of parameters along PVL #1. This PVL corresponds to

a constant excitation frequency of g ¼ 3 (see Eq. (11)) as the mean flow rate Z is increased. Thus, as the flow rate is

increased for this value of parametric excitation frequency, the trivial solution (T) becomes unstable at the pitchfork

circle P0 giving rise to the larger amplitude, stable SW mode. The trivial solution then remains unstable throughout the

range of Z used in simulations. At point 3, the smaller amplitude, unstable SW mode arises from the second pitchfork

circle intersection. The two SW modes annihilate one another at the SNSW intersection point 5, but not before a stable

TW2 solution bifurcates at point 8 from the unstable SW mode. Thus, we expect the physical motion of the tube to

correspond to the downhanging position giving way to a stable planar periodic oscillation in a smooth fashion. This

stable planar oscillation ends at the point 5 and the motion then jumps to the stable TW2 branch in which the rotary

periodic motion is superposed with a slow frequency oscillation. Note that if the mean flow rate is decreased along this

TW branch, a hysteretic loop is formed where the motion of the tube jumps from the elliptical path along the TW2

branch to the planar oscillation.
6.2. Case 2: m ¼ �4, a0 ¼ 2:5

The amplitude response for this line through the parameter plane is shown in Fig. 9. Here, the trivial solution

becomes unstable at point 2 and the subcritically bifurcating unstable SW mode connects, after the SNSW bifurcation

set is crossed at point 5, with the stable SW mode. The stable SW mode bifurcates supercritically to the stable TW2

solution at the point 8. The secondary Hopf bifurcation curve HSW is crossed at the point 7 creating a sub-

critical unstable SW2 motion, and the corresponding SW mode disappears at the point 3 where the pitchfork circle is

crossed for the second time. The unstable SW2 motion terminates at the point 11 where the period of oscilla-

tion generated in AUTO began increasing exponentially, indicating the presence of the heteroclinic bifurcation, SLs.

This solution branch was not generated further. The TW2 solution continues as a stable solution branch from

point 8 onward, and as far as we have taken the simulations, it persists without encountering any instabilities,

consistent with results in Fig. 4 for the TB point Z ¼ 0, a ¼ �d. We see here, again, a hysteretic effect between the stable

SW mode and the trivial solution in the flow interval defined by points 2 and 5. Thus, physically we expect the tube

to lose stability in the downhanging position and jump to the stable SW branch, which then merges smoothly

with the TW2 branch.
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Fig. 7. The parameter variation lines used to develop the amplitude diagrams for the mass ratio of b2 ¼ 0:65.
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6.3. Case 3: m ¼ 0, a0 ¼ 6

As shown in Fig. 10, the trivial solution here becomes unstable along the primary Hopf bifurcation set H0 (at Z ¼ 0,

point 4) and the two-frequency waves SW2 (unlocked planar motion) and TW2 (two-frequency rotary motion) emanate

from this point. Note that, while the amplitude for the SW2 solution is as derived in Eq. (39), the amplitude of the TW2

solution is generated by AUTO. It is however consistent with the relation in Eq. (39). The stable and unstable fixed-

point SW modes arise at a flow rate below the critical value (Z ¼ 0) at point 5, and do not reconnect along the SNSW

boundary within the mean flow rate interval considered. A more complete picture is shown in the amplitude response

diagram for the case 4 below. The TW2 solution emanating from Z ¼ 0 undergoes a secondary Hopf bifurcation at

point 10 giving rise to the stable MW motions. The unstable TW2 branch then connects to the unstable SW solution

branch at the point 8, while we suspect that the stable MW branch ends along the LS boundary where it connects with

the SW2 mode, as discussed in the TB analysis above.

Physically, the downhanging position becomes unstable at Z ¼ 0 where there are two possibilities for stable motions:

TW2 and SW. The type and magnitude of the applied disturbance to the tube determines which motion is observed. If

the disturbance is essentially planar, the SW mode is achieved. For out-of-plane initial conditions, stable small two-

frequency oscillations (TW2) arise for Z40. Numerical integration along these solution branches further shows that at a

flow rate approximately equal to Z ¼ 0:42, and for small out-of-plane disturbances, the motion jumps to the stable SW
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Fig. 8. The amplitude response diagram as a function of the flow rate; the flow is varied along the line PVL#1 in Fig. 7. T—trivial

solution, SW—standing wave solution, TW2—mixed travelling wave solution.
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mode from the stable TW2 motion. Thus, the tube exhibits amplitude-modulated nonplanar oscillations for small out-

of-plane disturbances that then give way to steady planar oscillations (SW). If the disturbance is out-of-plane and not

too large, the TW2 motion is achieved, that is, the tube exhibits elliptical motions. These become unstable via the

secondary Hopf bifurcation where the MW mode arises. Numerical experiments with initial conditions suggest that

large out-of-plane disturbances are attracted to the large amplitude SW mode.
6.4. Case 4: m ¼ �1:25, a0 ¼ 10

Fig. 11 shows the amplitude response diagram for this case where all three distinct previously seen responses are

present. The trivial solution becomes unstable at Z ¼ 0 and since the point 5, where the stable and unstable SW modes

arise, occurs for flow rates much greater than Z ¼ 0, the system must go into the limit cycle motions described by the

stable two-frequency modes (TW2) that arises at Z ¼ 0. The TW2 solution becomes unstable at the point 10 by a Hopf

bifurcation along the set LH, giving rise to the stable MW solution. This MW solution exists over a much smaller flow

interval compared to the interval in case 3, and connects with the SW2 motions along the LS boundary. The now

unstable TW2 solution connects to the unstable SW mode at point 8. The stable SWmode becomes unstable at the point

9 along the set PSW by a secondary pitchfork bifurcation, giving rise to the TW2 solution. This mixed TW solution

continues and, again, we were unable to find any subsequent instability in these motions beyond this region. The SW

modes connect at point 6 at a saddle node.

As opposed to the discussion for case 3, we see that the trivial solution has only two branching possibilities for

motions beyond the zero mean flow rate, and the interval in mean flow where these two motions coexist is larger.

Furthermore, the region of existence for the TW2 and SW2 motions becomes important to insure that it can connect to

the other motions as discussed in case 3. By numerical integration, we have seen that the SW2 modes end at a mean flow

rate near 1.805, while point 5 occurs at a mean flow rate of 1.720, and is clearly beyond the point 11 for the MW
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Fig. 9. The amplitude response diagram as a function of the flow rate; the flow is varied along the line PVL#2 in Fig. 7. T—trivial

solution, SW—standing wave solution, TW2—mixed travelling wave solution, MW – modulated wave motion with nonzero mean,

two-frequency solution.
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solution. For small positive flow rates then, and for sufficiently large out-of-plane disturbances, the tube exhibits the

elliptical motion (TW2 mode) that merges with the MW motion via the secondary Hopf bifurcation shown. As the

response diagram is continued for flow rates across the whole bifurcation diagram, we see that the pure planar

oscillations (SW mode) merge with the TW2 mode for large flow rates. As before, no additional instabilities are found

for this motion.

These four response diagrams illustrate most of the features of the basic dynamics that occur locally when the

continuous cantilever tube conveying a pulsatile flow becomes unstable as the mean flow rate is varied beyond the

critical value.
7. Summary

The effects of small symmetry-breaking perturbations on the O(2)-Hopf normal form are studied through the

example of a cantilever pipe conveying a pulsatile flow and undergoing three-dimensional motions. The downward

vertical equilibrium of the pipe is known to become unstable by a Hopf bifurcation, and in the case of system with

O(2)-symmetry, results in self-excited limit cycle oscillations in the form of standing waves or rotating waves. This

response behavior can significantly change in the presence of small symmetry-breaking effects. The perturbations

in the form of additive linear terms that destroy the local S1 (temporal phase-shift) symmetry of the O(2)-Hopf normal

form induced by the Hopf bifurcation arise in a natural manner when a time-periodic pulsatile flow component is

introduced.

A careful local bifurcation analysis of the normal form equations shows that, for a fixed amplitude of parametric

perturbations, the O(2)-symmetric zero solution can bifurcate into Z2-symmetric phase-locked standing waves,
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Fig. 10. The amplitude response diagram as a function of the flow rate; the flow is varied along the line PVL#3 in Fig. 7. T—trivial

solution, SW—standing wave solution, TW2—mixed travelling wave solution, MW – modulated wave motion with nonzero mean,

two-frequency solution.
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travelling or rotating waves, or two-frequency waves. Some of these solutions can be stable and coexist for the same

value of the primary bifurcation parameter. The travelling waves can also undergo a Hopf bifurcation into another class

of two-frequency waves. Two codimension-2 points are identified in the parameter space where locally the dynamics is

described by the O(2)-Takens–Bogdanov normal form. The results available in the literature for this normal form are

used to develop a picture of the dynamic behavior of the cantilever tube in the presence of a pulsatile flow.
Appendix

The coefficients of the O(2)-Takens–Bogdanov Normal Form in Section 5.4 are:

a1 ¼ ða
2 þ b2Þ½að2F1r þ F2rÞ � bð2F1i þ F2iÞ�=8a,

b1 ¼ ½aF1r � bð2F1i þ F2iÞ�=4a,

c1 ¼ ½ða
2 þ b2ÞF2i þ 2b2F1i � 2abF1r�=8a;

a2 ¼ ½ða
2 þ b2ÞF1i � b2ðF1i þ F2iÞ � abðF1r þ F2rÞ�=4a,

b2 ¼ ð2F1i þ F2iÞ=8a,

c2 ¼ ½aF2r � bð2F1i þ F2iÞ�=8a;
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Fig. 11. The amplitude response diagram as a function of the flow rate; the flow is varied along the line PVL#4 in Fig. 7. T—trivial

solution, SW—standing wave solution, TW2—mixed travelling wave solution, MW – modulated wave motion is a nonzero mean, two-

frequency solution.
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a3 ¼ �ða
2 þ b2Þð2F1i þ F2iÞ=8a,

b3 ¼ �½abðF1r þ F2rÞ þ ða
2 þ b2ÞF1i þ b2ðF1i þ F2iÞ�=4a,

c3 ¼ ða
2 þ b2Þ½aF1r þ bð2F1i þ F2iÞ�=8a;

a4 ¼ ða
2 þ b2Þ½aF1r þ bð2F1i þ F2iÞ�=4a,

b4 ¼ ½að2F1r þ F2rÞ þ bð2F1i þ F2iÞ�=8a,

c4 ¼ �½2abF1r þ 2b2F1i þ F2iða
2 þ b2

Þ�=8a;

A ¼ �ða2 þ b2Þð2F1i þ F2iÞ=8a,

B ¼ �aðF1i � F2iÞ=2,

C ¼ ða2 þ b2ÞðF1r þ F2rÞ=4,

D ¼ F1rða
2 þ b2Þ=2,

M ¼ 2C þD ¼ ða2 þ b2Þð2F1r þ F2rÞ=2.
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